An Overview of Trilinos

Jonathan Hu Sandia National Laboratories

Eleventh DOE ACTS Collection Workshop

August 19th, 2010

Main Title 32pt

Subtitle 28 pt

Date /time 20pt

Speaker 24pt Speaker title 22pt

The acknowledgement statement <u>MUST</u> be used on the title slide of all presentation material distributed outside of Sandia.

Outline of Talk

- Background / Motivation.
- Trilinos Package Concepts.
- Whirlwind Tour of Trilinos Packages.
- Getting Started.
- Concluding remarks.
- Hands On Tutorial from 3:45-5:45pm this afternoon

Who are the developers?

(a very incomplete list)

Chris Baker

Develops: Anasazi, RBGen, Tpetra

Ross Bartlett

Leads: Thyra and Stratimikos

Develops: Rythmos

Pavel Bochev

Leads: Intrepid

Paul Boggs

Develops: Thyra

Eric Boman

Leads: Isorropia Develops: Zoltan

Cedric Chevalier

Develops: Zoltan, Isorropia

Todd Coffey

Leads: Rythmos

Eric Cyr

Leads: Teko

David Day

Develops: Komplex and Intrepid

Karen Devine

Leads: Zoltan

Develops: Isorropia

Clark Dohrmann

Develops: CLAPS

Carter Edwards

Leads: ThreadPool, Shards, PhdMesh

Develops: STK

Michael Gee

Develops: Moertel, ML

Glen Hansen

Leads: Moertel

Dave Hensinger

Leads: PamGen

Bob Heaphy

Leads: Trilinos SQA

Mike Heroux

Trilinos Project Leader

Leads: Epetra, AztecOO, Kokkos, Komplex,

IFPACK, Thyra, Tpetra

Develops: Amesos, Belos, EpetraExt, Jpetra

Ulrich Hetmaniuk

Develops: Anasazi

Robert Hoekstra

Leads: EpetraExt

Develops: Epetra, Thyra, Tpetra

Mark Hoemmen

Develops: Anasazi

Russell Hooper

Develops: NOX

Vicki Howle

Leads: Meros

Develops: Belos and Thyra

Jonathan Hu

Develops: ML

Sarah Knepper

Develops: Komplex

Joe Kotulski

Leads: Pliris

Robert Kirby

Develops: Intrepid

Pat Knupp

Develops: Mesquite

Jason Kraftcheck

Develops: Mesquite

Rich Lehoucg

Develops: Anasazi and Belos

Nicole Lemaster

Leads: CTrilinos, ForTrilinos

Kevin Long

Leads: Thyra, Sundance Develops: Teuchos

Karla Morris

Develops: ForTrilinos, Ctrilinos, Morfeus

Kurtis Nusbaum

Leads: Optika

Ron Oldfield

Leads: Trios

Roger Pawlowski

Leads: NOX, Phalanx Develops: Shards, LOCA

Brent Perschbacher

Framework manager

Kara Peterson

Develops: Intrepid

Eric Phipps

Leads: Sacado, Stokhos Develops: LOCA, NOX

Siva Rajamanickam

Develops: Zoltan

Denis Ridzal

Leads: Aristos and Intrepid

Lee Ann Riesen

Develops: Zoltan, Isorropia

Damian Rouson

Leads: Morfeus

Develops: ForTrilinos and Ctrilinos

Chris Siefert

Develops: ML, Ifpack

Greg Sjaardema

Develops: Trios, STK

Andrew Salinger

Leads: LOCA Develops: Trikota

Bill Spotz

Leads: PyTrilinos

Develops: Epetra, New Package

Heidi Thornquist

Leads: Anasazi, Belos, RBGen, and Teuchos

Ray Tuminaro

Leads: ML and Meros

Jim Willenbring

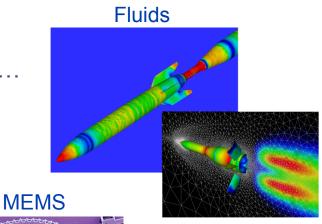
Develops: Epetra and New Package.

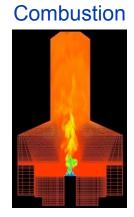
Trilinos library manager

Alan Williams

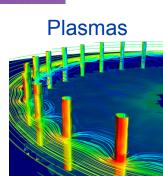
Leads: Isorropia

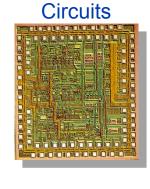
Develops: Epetra, EpetraExt, AztecOO, Tpetra

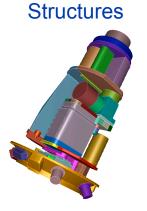

Tifpack


Michael Wolf

Develops: Zoltan, Isorropia


Sandia Physics Simulation Codes


- Element-based
 - Finite element, finite volume, finite difference, network, etc...
- Large-scale
 - Billions of unknowns
- Parallel
 - MPI-based SPMD
 - Distributed memory
- C++
 - Object oriented
 - Some coupling to legacy Fortran libraries



Motivation For Trilinos

- Sandia does LOTS of solver work.
- 10 years ago ...
 - Aztec was a mature package. Used in many codes.
 - FETI, PETSc, DSCPack, Spooles, ARPACK, DASPK, and many other codes were (and are) in use.
 - New projects were underway or planned in multi-level preconditioners, eigensolvers, non-linear solvers, etc...
- The challenges:
 - Little or no coordination was in place to:
 - Efficiently reuse existing solver technology.
 - Leverage new development across various projects.
 - Support solver software processes.
 - Provide consistent solver APIs for applications.
 - ASCI was forming software quality assurance/engineering (SQA/ SQE) requirements:
 - Daunting requirements for any single solver effort to address alone.

Trilinos – A High Level View

- Trilinos is a framework
 - Public release 10.4 contains 47 numerical libraries, called "packages"
 - Packages
 - Are developed by domain experts
 - Are often interoperable
 - May have originated within Trilinos, or started separately (e.g., Zoltan)
- Why it's good to be a package
 - Software version control (git), unified build system (cmake)
 - Automated nightly and integrated app testing
 - Mailing lists (dev, user, regression, announce, checkin)
 - Autonomy (R&D, coding style, testing, documentation, etc.)
- What capabilities does Trilinos provide for my app?
 - Basic parallel linear algebra
 - Solvers, AD, meshing, discretizations, optimization, load-balancing, etc.
 - Capabilities all developed and supported by domain experts
 - Unified abstract API
 - Lots more on capabilities to come ...

Evolving Trilinos Solution

- Beyond a "solvers" framework
- Natural expansion of capabilities to satisfy application and research needs

Numerical math

Convert to models that can be solved on digital computers

Algorithms

Find faster and more efficient ways to solve numerical models

discretizations

Time domain Space domain

solvers Tribnos

Linear Nonlinear Eigenvalues Optimization

methods

Automatic diff. Domain dec. Mortar methods

Petra **Utilities** Interfaces **Load Balancing**

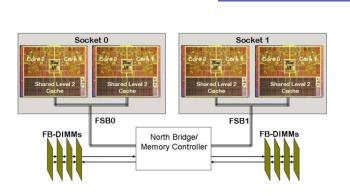
Discretization methods, AD, Mortar methods, ...

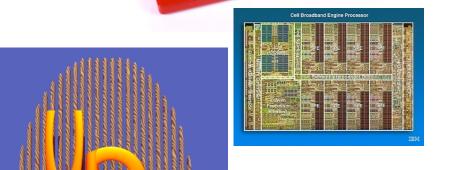
Trilinos Package Summary

	Objective	Package(s)
Discretizations	Meshing & Spatial Discretizations	Intrepid, Phalanx, Shards, Pamgen, Sundance, Mesquite, STK, Moertel
	Time Integration	Rythmos
Optimization	Optimization (SAND)	MOOCHO, Aristos
Methods	Automatic Differentiation	Sacado
Core	Linear algebra objects	Epetra, Jpetra, Tpetra
	Abstract interfaces	Thyra, Stratimikos, RTOp, Piro
	Load Balancing	Zoltan, Isorropia
	"Skins"	PyTrilinos, WebTrilinos, Star-P, ForTrilinos, CTrilinos
	C++ utilities, (some) I/O	Teuchos, EpetraExt, Kokkos, Triutils
	GUIs	Optika
Preconditioners	Multigrid methods	ML
	Domain decomposition methods	CLAPS, IFPACK
	ILU-type methods	AztecOO, IFPACK, TIFPACK
	Block preconditioners	Teko, Meros
Solvers	Iterative (Krylov) linear solvers	AztecOO, Belos, Komplex
	Direct sparse linear solvers	Amesos
	Direct dense linear solvers	Epetra, Teuchos, Pliris
	Nonlinear system solvers	NOX, LOCA
	Iterative eigenvalue solvers	Anasazi 9
	Stochastic PDEs	Stokhos

Trilinos Strategic Goals

- Scalable Computations: As problem size and processor counts increase, the cost of the computation will remain nearly fixed.
- Hardened Computations: Never fail unless problem essentially intractable, in which case we diagnose and inform the user why the problem fails and provide a reliable measure of error.
- Full Vertical Coverage: Provide leading edge enabling technologies through the entire technical application software stack: from problem construction, solution, analysis and optimization.
- Grand Universal Interoperability: All Trilinos packages will be interoperable, so that any combination of solver packages that makes sense algorithmically will be possible within Trilinos.
- Universal Accessibility: All Trilinos capabilities will be available to users
 of major computing environments: C++, Fortran, Python and the Web, and
 from the desktop to the latest scalable systems.
- Universal Solver RAS: Trilinos will be:
 - Reliable: Leading edge hardened, scalable solutions for each of these applications
 - Available: Integrated into every major application at Sandia
 - Serviceable: Easy to maintain and upgrade within the application environment.


Algorithmic Goals


Software Goals

Target Platforms: Any and All

(Now and in the Future)

- Desktop: Development and more...
- Capability machines:
 - Redstorm (XT3), Clusters
 - Roadrunner (Cell-based).
 - Multicore nodes.
- Parallel software environments:
 - MPI of course.
 - UPC, CAF, threads, vectors,...
 - Combinations of the above.
- User "skins":
 - ◆ C++/C, Python
 - Fortran.
 - Web, CCA.

Whirlwind Tour of Packages

Frequently Requested Discretizations Methods Core Solvers/ Preconditioners

Teuchos

- Portable utility package of commonly useful tools:
 - ParameterList class: key/value pair database, recursive capabilities.
 - ◆ LAPACK, BLAS wrappers (templated on ordinal and scalar type).
 - Dense matrix and vector classes (compatible with BLAS/LAPACK).
 - FLOP counters, timers.
 - Ordinal, Scalar Traits support: Definition of 'zero', 'one', etc.
 - Reference counted pointers / arrays, and more...
- Takes advantage of advanced features of C++:
 - Templates
 - Standard Template Library (STL)
- Teuchos::ParameterList:
 - Allows easy control of solver parameters.
 - XML format input/output.

POCs: Roscoe Barlett, Mike Heroux {rabartl,maherou}@sandia.gov

Trilinos Common Language: Petra

- Petra provides a "common language" for distributed linear algebra objects (operator, matrix, vector)
- Petra¹ provides distributed matrix and vector services.
- Exists in basic form as an object model:
 - Describes basic user and support classes in UML, independent of language/implementation.
 - Describes objects and relationships to build and use matrices, vectors and graphs.
 - Has 3 implementations under development.

Epetra – Distributed Linear Algebra

- Epetra (Essential Petra):
 - Current production version.
 - Restricted to real, double precision arithmetic.
 - ◆ Uses stable core subset of C++ (circa 2000).
 - Interfaces accessible to C and Fortran users.
 - Global index size limited to 32-bit integers

- Many sparse matrix formats: CSR, FE-CSR, MSR, VBR, JD
- Common abstract matrix interface: Epetra_RowMatrix
- Vector, MultiVector, Graphs
- Serial & MPI support
- Maps parallel data management

Sandia National Laboratories

EpetraExt: Extensions to Epetra

- Library of useful classes not needed by everyone
- Most classes are types of "transforms".
- Examples:
 - Graph/matrix view extraction.
 - Epetra/Zoltan interface.
 - Explicit sparse transpose.
 - Singleton removal filter, static condensation filter.
 - Overlapped graph constructor, graph colorings.
 - Permutations.
 - Sparse matrix-matrix multiply.
 - Matlab, MatrixMarket I/O functions.
 - Wrapper for PETSc aij matrices.
- Most classes are small, useful, but non-trivial to write.

Developers: Robert Hoekstra, Alan Williams, Mike Heroux, many others

Tpetra – Distributed Linear Algebra (Templated)

- Tpetra (Templated Petra):
 - ◆ C++, successor to Epetra.
 - Templated scalar and ordinal fields.
 - Uses namespaces, and STL: Improved usability/efficiency.
- Similarities to Epetra
 - Sparse parallel matrices: CSR, VBR
 - MultiVector
 - Graphs
- Important differences
 - Templated scalar/ordinal fields
 - Handles only intra-node communication.
 - Inter-node communication is handled by Kokkos package
 - Multicore, GPU
 - Allows for mixed MPI/threading, MPI/GPU

Sandia National Laboratories

Belos

- Iterative linear solver library, written in templated C++.
- Provide a generic framework for developing iterative algorithms for solving large-scale, linear problems.
- Algorithm implementation is accomplished through the use of traits classes and abstract base classes:

Operator-vector products: Belos::MultiVecTraits, Belos::OperatorTraits
 Orthogonalization: Belos::OrthoManager, Belos::MatOrthoManager
 Status tests: Belos::StatusTest, Belos::StatusTestResNorm

Iteration kernels: Belos::IterationLinear solver managers: Belos::SolverManager

- Krylov methods for single systems Ax=b
 - Simultaneously solved systems w/ multiple-RHS: AX = B
 - Sequentially solved systems w/ multiple-RHS: AX_i = B_i, i=1,...,t
 - Sequences of multiple-RHS systems: A_iX_i = B_i, i=1,...,t
- Many advanced methods for these types of linear systems
 - Block methods: block GMRES [Vital], block CG/BICG [O'Leary]
 - "Seed" solvers: hybrid GMRES [Nachtigal, et al.]
 - Recycling solvers: recycled Krylov methods [Parks, et al.]
 - Restarting techniques, orthogonalization techniques, ...

POCs: Heidi Thornquist, Mike Parks, Rich Lehoucq {hkthorn,mlparks,rblehou}@sandia.gov

IFPACK: Algebraic Preconditioners

- Overlapping Schwarz preconditioners with incomplete factorizations, block relaxations, block direct solves.
- Accept user matrix via abstract matrix interface (Epetra versions).
- Uses Epetra for basic matrix/vector calculations.
- Supports simple perturbation stabilizations and condition estimation.
- Separates graph construction from factorization, improves performance substantially.
- Compatible with AztecOO, ML, Amesos. Can be used by NOX and ML.

POCs: Mike Heroux, Alan Williams

Amesos

 Interface to direct solvers for distributed sparse linear systems (KLU, UMFPACK, SuperLU, MUMPS, ScaLAPACK)

Challenges:

- No single solver dominates
- Different interfaces and data formats, serial and parallel
- Interface often changes between revisions

Amesos offers:

- A single, clear, consistent interface, to various packages
- Common look-and-feel for all classes
- Separation from specific solver details
- Use serial and distributed solvers; Amesos takes care of data redistribution
- Native solvers: KLU and Paraklete

POCs: Mike Heroux maherou@sandia.gov

: Multigrid Preconditioners

- Smoothed aggregation multigrid, domain decomposition preconditioning, nonsymm. multigrid
- Critical technology for scalable performance of some key apps.
- ML compatible with other Trilinos packages:
 - Provides internal smoothers + smoothers from Ifpack, Amesos, AztecOO
 - If user data can be wrapped as Epetra_RowMatrix object (abstract interface), ML can be applied to it.
 - ML preconditioners can precondition methods in AztecOO, Belos, Anasazi.
- Coarsening strategies: uncoupled, MIS, 3rd party graph
- Smoothers: Jacobi, SOR, Chebyshev, ILU/IC/etc.
- Problem types: Laplace, electro-magnetics, convectiondiffusion, elasticity
- Can also be used in stand-alone mode.

Anasazi

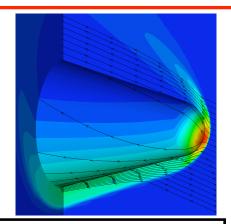
- Eigensolver library, written in templated C++.
- Provides a generic framework for developing iterative algorithms for solving large-scale eigenproblems.
- Algorithm implementation is accomplished through the use of traits classes and abstract base classes:

Operator-vector products: Anasazi::MultiVecTraits, Anasazi::OperatorTraits
 Orthogonalization: Anasazi::OrthoManager, Anasazi::MatOrthoManager
 Status tests: Anasazi::StatusTest, Anasazi::StatusTestResNorm

Iteration kernels: Anasazi::Eigensolver
 Eigensolver managers: Anasazi::SolverManager
 Eigenproblem: Anasazi::Eigenproblem
 Sort managers: Anasazi::SortManager

- Currently has solver managers for three eigensolvers:
 - Block Krylov-Schur
 - Block Davidson
 - LOBPCG
- Can solve:
 - standard and generalized eigenproblems
 - Hermitian and non-Hermitian eigenproblems
 - real or complex-valued eigenproblems

POCs: Heidi Thornquist, Rich Lehoucq, Chris Baker {hkthorn,rblehou}@sandia.gov, bakercg@ornl.gov


NOX: Nonlinear Solvers

Suite of nonlinear solution methods

Broyden's Method

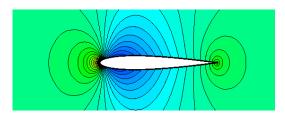
Newton's Method

Tensor Method

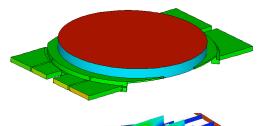
Jacobian Estimation

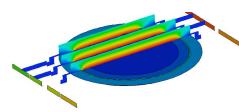
- Graph Coloring
- Finite Difference
- Jacobian-Free Newton-Krylov

Trust Region


Dogleg

Inexact Dogleg


Line Search


Interval Halving Quadratic Cubic

More'-Thuente

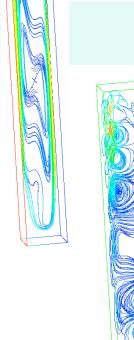
http://trilinos.sandia.gov/packages/nox

<u>Implementation</u>

- Parallel
- · 00-C++
- Independent of the linear algebra package!



LOCA


Library of continuation algorithms

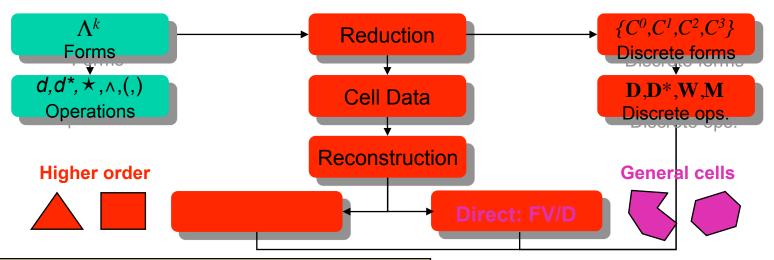
Provides

- Zero order continuation
- First order continuation
- Arc length continuation
- Multi-parameter continuation (via Henderson's MF Library)
- Turning point continuation
- Pitchfork bifurcation continuation
- Hopf bifurcation continuation
- Phase transition continuation
- Eigenvalue approximation (via ARPACK or Anasazi)

POCs: Andy Salinger, Eric Phipps {agsalin,etphipp}@sandia.gov

Whirlwind Tour of Packages

Frequently Requested Discretizations Methods Core Solvers/ Preconditioners



Interoperable Tools for Rapid Development of Compatible Discretizations

Intrepid offers an innovative software design for compatible discretizations:

- allows access to FEM, FV and FD methods using a common API
- supports hybrid discretizations (FEM, FV and FD) on unstructured grids
- supports a variety of cell shapes:
 - standard shapes (e.g. tets, hexes): high-order finite element methods
 - arbitrary (polyhedral) shapes: low-order mimetic finite difference methods
- enables optimization, error estimation, V&V, and UQ using fast invasive techniques (direct support for cell-based derivative computations or via automatic differentiation)

POCs: Pavel Bochev, Denis Ridzal, Kara Peterson {pbboche,dridzal,kjpeter}@sandia.gov

PAMGEN In-line Meshing Library

- On-the-fly parallel generation of simple meshes.
 - 2D/3D, quad/hex
 - Can mesh cylindrical, block, tubular domains
 - No interprocess communication required
 - Fixed mesh-size per process easily generated for weak scaling experiments.
 - No pre-partitioned mesh files needed.
 - C interface to local mesh geometry and topology as well as interprocessor connections.
- New in Trilinos 10:
 - Extended to > 2B elements (ordinal type is user-specified).

POC: Dave Hensinger dmhensi@sandia.gov

Whirlwind Tour of Packages

Frequently Requested Discretizations Methods Core Solvers/ Preconditioners

- Efficient OO based AD tools optimized for element-level computations
- Applies AD at "element"-level computation
 - "Element" means finite element, finite volume, network device,...
- Template application's element-computation code
 - Developers only need to maintain one templated code base
- Provides three forms of AD
 - ullet Forward Mode: $(x,\ V) \longrightarrow \left(f,\ \frac{\partial f}{\partial x}V\right)$
 - Propagate derivatives of intermediate variables w.r.t. independent variables forward
 - Directional derivatives, tangent vectors, square Jacobians, $\partial f/\partial x$ when $\mathbf{m} \geq \mathbf{n}$.
 - ullet Reverse Mode: $(x,\ W) \longrightarrow \left(f,\ W^T \frac{\partial f}{\partial x}\right)$
 - · Propagate derivatives of dependent variables w.r.t. intermediate variables backwards
 - Gradients, Jacobian-transpose products (adjoints), $\partial f/\partial x$ when ${f n}$ > ${f m}$.
 - ullet Taylor polynomial mode: $x(t) = \sum_{k=0}^d x_k t^k \longrightarrow \sum_{k=0}^d f_k t^k = f(x(t)) + O(t^{d+1}), \;\; f_k = \frac{1}{k!} \frac{d^k}{dt^k} f(x(t))$
 - Basic modes combined for higher derivatives.

Developers: Eric Phipps etphipp@sandia.gov David Gay dmg@acm.org

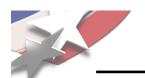
Whirlwind Tour of Packages

Frequently Requested Discretizations Methods Core Solvers/ Preconditioners

Thyra

- High-performance, abstract interfaces for linear algebra
- Offers flexibility through abstractions to algorithm developers
- Linear solvers (Direct, Iterative, Preconditioners)
 - Abstraction of basic vector/matrix operations (dot, axpy, mv).
 - Can use any concrete linear algebra library (Epetra, PETSc, BLAS).
- Nonlinear solvers (Newton, etc.)
 - ◆ Abstraction of linear solve (solve Ax=b).
 - Can use any concrete linear solver library:
 - AztecOO, Belos, ML, PETSc, LAPACK
- Transient/DAE solvers (implicit)
 - Abstraction of nonlinear solve.
 - ... and so on.

POC: Roscoe Bartlett rbbartl@sandia.gov



Stratimikos

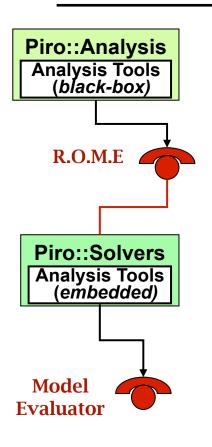
- Defines class Thyra::DefaultLinearSolverBuilder.
- Provides common access to:
 - Linear Solvers: Amesos, AztecOO, Belos, ...
 - Preconditioners: Ifpack, ML, ...
 - •Reads in options through a parameter list (read from XML?)
 - Accepts any linear system objects that provide
 - •Epetra_Operator / Epetra_RowMatrix view of the matrix
 - SPMD vector views for the RHS and LHS (e.g. Epetra_[Multi]Vector objects)
- Provides uniform access to linear solver options that can be leveraged across multiple applications and algorithms

POC: Roscoe Bartlett rbbartl@sandia.gov

Stratimikos Parameter List and Sublists

```
<ParameterList name="Stratimikos">
  <Parameter name="Linear Solver Type" type="string" value="Aztec00"/>
  <Parameter name="Preconditioner Type" type="string" value="Ifpack"/>
  <ParameterList name="Linear Solver Types">
    <ParameterList name="Amesos">
     <Parameter name="Solver Type" type="string" value="Klu"/>
     <ParameterList name="Amesos Settings">
       <Parameter name="MatrixProperty" type="string" value="general"/>
       <ParameterList name="Mumps"> ... 
       <ParameterList name="Superludist"> ... 
     </ParameterList>
   </ParameterList>
    <ParameterList name="Aztec00">
     <ParameterList name="Forward Solve">
       <Parameter name="Max Iterations" type="int" value="400"/>
       <Parameter name="Tolerance" type="double" value="1e-06"/>
       <ParameterList name="Aztec00 Settings">
         <Parameter name="Aztec Solver" type="string" value="GMRES"/>
       </ParameterList>
     </ParameterList>
    </ParameterList>
    <ParameterList name="Belos"> ... 
  </ParameterList>
<ParameterList name="Preconditioner Types">
    <ParameterList name="Ifpack">
     <Parameter name="Prec Type" type="string" value="ILU"/>
     <Parameter name="Overlap" type="int" value="0"/>
     <ParameterList name="Ifpack Settings">
       <Parameter name="fact: level-of-fill" type="int" value="0"/>
     </ParameterList>
   </ParameterList>
    <ParameterList name="ML"> ... 
  </ParameterList>
</ParameterList>
```

Top level parameters


Linear Solvers

Sublists passed on to package code!

Every parameter and sublist is handled by Thyra code and is fully validated!

Preconditioners

Piro: Single wrapper for all solver and analysis packages

Piro::Analysis abstraction:

Wraps Dakota, MOOCHO, OptiPack analysis packages

Constructed with: Solver, paramList Will make use of analytic sensitivities

Piro::Solver abstraction:

Wraps NOX, LOCA, Rythmos, Stokhos, MOOCHO solvers

Constructed with: modelEvaluator, paramList Calculates sensitivities

Can be used to construct Piro::Analysis layer

With Piro, you can select all these through a parameter list:

- a) Optimization of transient problem
- b) UQ of a steady problem
- c) Least-squares fit of bifurcation problem

POC: Andy Salinger agsalin@sandia.gov

"Skins"

- PyTrilinos provides Python access to Trilinos packages
- Uses SWIG to generate bindings.
- Epetra, AztecOO, IFPACK, ML, NOX, LOCA, Amesos and NewPackage are supported.

POC: Bill Spotz spotz@sandia.gov

- WebTrilinos: Web interface to Trilinos
- Generate test problems or read from file.
- Generate C++ or Python code fragments and click-run.
- Hand modify code fragments and re-run.
- Will use during hands-on.

POC: Jim Willenbring jmwille@sandia.gov

Whirlwind Tour of Packages

Frequently Requested Discretizations Methods Core Solvers/ Preconditioners

AztecOO

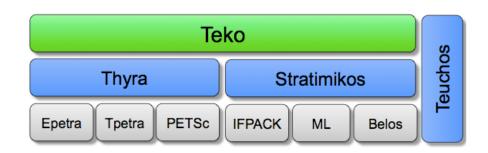
- Krylov subspace solvers: CG, GMRES, Bi-CGSTAB,...
- Incomplete factorization preconditioners
- Aztec is the workhorse solver at Sandia:
 - Extracted from the MPSalsa reacting flow code.
 - Installed in dozens of Sandia apps.
 - 1900+ external licenses.
- AztecOO improves on Aztec by:
 - Using Epetra objects for defining matrix and RHS.
 - Providing more preconditioners/scalings.
 - Using C++ class design to enable more sophisticated use.
- AztecOO interfaces allows:
 - Continued use of Aztec for functionality.
 - Introduction of new solver capabilities outside of Aztec.

POCs: Mike Heroux, Alan Williams, Ray Tuminaro {maherou,william,rstumin}@sandia.gov

(not released yet)

- Facilitates implementing "block" preconditioners
- Target applications are multiphysics systems
- Implemented preconditioners

Block 2x2 LU Multiplicative


◆ Block Gauss-Seidel LSC (Navier-Stokes)

Block Jacobi
 SIMPLE (Navier-Stokes)

Additive

- Can use Trilinos solvers/preconditioners for sub solves
- Can convert monolithic system into blocked system
- Can be used by Aztec and Belos
- Can use ML, Ifpack

POC: Eric Cyr (eccyr@sandia.gov)

Full Vertical Solver Coverage

Optimization Unconstrained: Constrained:	Find $u \in \Re^n$ that minimizes $g(u)$ Find $x \in \Re^m$ and $u \in \Re^n$ that minimizes $g(x,u)$ s.t. $f(x,u) = 0$	acado)	МООСНО
Bifurcation Analysis	Given nonlinear operator $F(x,u) \in \Re^{n+m}$ - For $F(x,u) = 0$ find space $u \in U \ni \frac{\partial F}{\partial x}$ s	ies ition: S	LOCA
Transient Problems DAEs/ODEs:	Solve $f(\dot{x}(t), x(t), t) = 0$ $t \in [0, T], x(0) = x_0, \dot{x}(0) = x_0'$ for $x(t) \in \Re^n, t \in [0, T]$	Sensitivities Differentiation	Rythmos
Nonlinear Problems	Given nonlinear operator $F(x) \in \Re^m \to \Re$ Solve $F(x) = 0$ $x \in \Re^n$	Se atic Di	NOX
Linear Problems Linear Equations: Eigen Problems:	Given Linear Ops (Matrices) $A, B \in \Re^{m \times n}$ Solve $Ax = b$ for $x \in \Re^n$ Solve $A\nu = \lambda B\nu$ for (all) $\nu \in \Re^n$, $\lambda \in$	(Automa	AztecOO Belos Ifpack, ML, etc Anasazi
Distributed Linear Algebra Matrix/Graph Equations Vector Problems:	Compute $y=Ax$; $A=A(G)$; $A\in\Re^{m\times n}, G\in \mathbb{R}^m$ Compute $y=\alpha x+\beta w$; $\alpha=\langle x,y\rangle$; $x,y\in\Re^n$		Epetra Tpetra

Trilinos / PETSc Interoperability

- Epetra_PETScAIJMatrix class
 - Derives from Epetra_RowMatrix
 - Wrapper for serial/parallel PETSc aij matrices
 - Utilizes callbacks for matrix-vector product, getrow
 - No deep copies
- Enables PETSc application to construct and call virtually any Trilinos preconditioner
 - ML, Ifpack, AztecOO, ...
 - All Trilinos options immediately available via parameter lists
- ML accepts fully constructed PETSc KSP solvers as smoothers
 - Fine grid only
 - Assumes fine grid matrix is really PETSc aij matrix
 - Complements Epetra_PETScAIJMatrix class
 - For any smoother with getrow kernel, PETSc implementation should be *much* faster than Trilinos
 - For any smoother with matrix-vector product kernel, PETSc and Trilinos implementations should be comparable

 Sandia
 National
 Laborate

Trilinos Integration into an Application

Where to start? http://trilinos.sandia.gov

Obtaining & Building Trilinos

- Source available from <u>trilinos.sandia.gov/download</u>
- Configuration requires cmake, version 2.8 (<u>www.cmake.org</u>)
- <u>Example</u>: enable ML package, ML examples, all optional packages:

```
cmake \
    -D CMAKE_INSTALL_PREFIX:PATH="${PWD}\" \
    -D Trilinos_ENABLE_ML:BOOL=ON \
    -D Trilinos_ENABLE_EXAMPLES:BOOL=ON \
    /home/jhu/trilinos-10.4.0-Source
cmake \
    -D CMAKE_INSTALL_PREFIX:PATH="${PWD}" \
    -D Trilinos_ENABLE_ML:BOOL=ON \
    -D Trilinos_ENABLE_EXAMPLES:BOOL=ON \
    -D TPL_ENABLE_MPI:BOOL=ON \
    -D Trilinos_EXTRA_LINK_FLAGS:STRING="-lgfortran" \
    /home/jhu/trilinos-10.4.0-Source
```

- cmake fine-grain control
 - User can configure just those packages she wants
 - Can activate tests and/or examples on per-package basis.
- Many, many more cmake options
- More help:
 - trilinos.sandia.gov/Trilinos10CMakeQuickstart.txt
 - Many configure scripts in trilinos-10.4.0-Source/sampleScripts

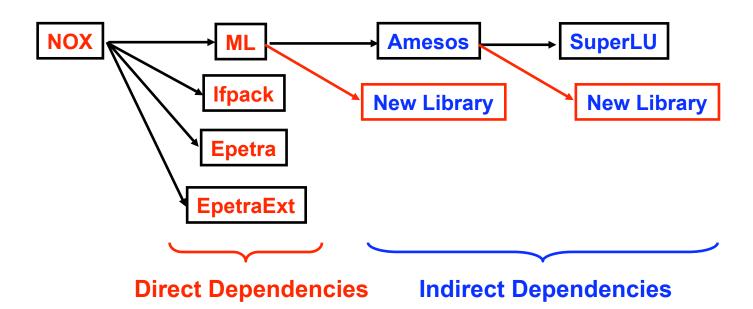
Linking Your Application with Trilinos

- Once Trilinos is built, how do you link against the application?
- There are a number of issues:
- Library link order:

```
-lnoxepetra -lnox -lepetra -lteuchos -lblas -llapack
```

Consistent compilers:

```
g++, mpiCC, icc, ...
```


Consistent build options and package defines:

Answer: Export Makefile system

Why Export Makefiles are Important

- Release 10.4 has 47 packages.
- As new package dependencies (especially optional ones) are introduced, more maintenance is required by top-level packages:

A top level package like NOX must either:

- Account for the new libraries in its configure script (not scalable)
- Depend on direct dependency packages to supply them through "export" Makefiles.

Export Makefile in Action

```
## Example Makefile that builds "NOX_1DFEMNonlinear" example outside of Trilinos
## Set the Trilinos install directory
TRILINOS_INSTALL_DIR = /home/jhu/Trilinos/trilinos-release-10-4-branch/sandbox-nox-mpi
## Include any direct Trilinos library dependencies - in this case only nox
include $(TRILINOS_INSTALL_DIR)/include/Makefile.export.NOX
COMPILE_FLAGS = $(NOX_CXX_FLAGS) $(NOX_INCLUDE_DIRS)
# TPL => "Third Party Library"
LINK_FLAGS = $(NOX_LIBRARY_DIRS) $(NOX_LIBRARIES) $(NOX_TPL_LIBRARY_DIRS) $(NOX_TPL_LIBRARIES)
            $(NOX EXTRA LD FLAGS)
## ## Build your application code ##
NOX_epetra_1DFEMNonlinear_Example.exe: Example.o Basis.o Problem_Interface.o FiniteElementProblem.o
    $(NOX CXX COMPILER) $(NOX_CXX_FLAGS) -o NOX_epetra_1DFEMNonlinear_Example.exe Example.o Basis.o
    Problem_Interface.o FiniteElementProblem.o $(LINK_FLAGS)
Basis.o: Basis.C
   $(NOX CXX COMPILER) $(COMPILE FLAGS) -c Basis.C
Example.o: Example.C
   $(NOX_CXX_COMPILER) $(COMPILE_FLAGS) -c Example.C
FiniteElementProblem.o: FiniteElementProblem.C
    $(NOX_CXX_COMPILER) $(COMPILE_FLAGS) -c FiniteElementProblem.C
Problem_Interface.o: Problem_Interface.C
   $(NOX_CXX_COMPILER) $(COMPILE_FLAGS) -c Problem_Interface.C
clean:
   \rm -f *.o *.exe *~
```


Concluding Remarks

Trilinos Availability / Information

- Trilinos and related packages are available via LGPL.
 - ◆ Current release (10.4) is "click release". Unlimited availability.
 - Next release: September 2010.
- Trilinos Awards:
 - 2004 R&D 100 Award.
 - SC2004 HPC Software Challenge Award.
 - Sandia Team Employee Recognition Award.
 - Lockheed-Martin Nova Award Nominee.
- More information:
 - http://trilinos.sandia.gov
- 7th Annual Trilinos User Group Meeting was November 2009 @ SNL
 - talks available for download
- Next TUG is November 2010 at Sandia/Albuquerque. Contact Jim Willenbring (<u>imwille@sandia.gov</u>) if you are interested in attending.

What's new in Trilinos 10.4

- July/2010 release includes 47 packages
- 1st release packages
 - ◆ Ctrilinos provides C bindings for Trilinos C++ packages. Target audience is Fortran application developers.
 - Globipack collection of scalar-only globalization code to support line searches
 - Optipack Thyra-based ANA optimization algorithms, e.g., nonlinear CG algorithms
- Makefile export system under cmake
 - Makes linking against Trilinos easier

Useful Links

Trilinos website: <u>trilinos.sandia.gov</u>

Trilinos tutorial: code.google.com/p/trilinos/wiki/TrilinosHandsOnTutorial

Trilinos mailing lists: <u>trilinos.sandia.gov/mail_lists.html</u>

Trilinos User Group (TUG) meetings:

trilinos.sandia.gov/events/trilinos_user_group_2009 trilinos.sandia.gov/events/trilinos_user_group_2008

